Дипломная работа: Некоторые линейные операторы
||F|| = (|y(x)|||) = ||y(x)|||| = || .
Таким образом, норма F(y) = будет ||F|| = ;
2) Найдем норму функционала, определенного на C[0, 2], где p(x)=(x-1)
F(y) = .
По выше доказанному ||F|| = = 1.
§3. Обратный оператор. Спектр оператора и резольвента
Пусть , – нормированные пространства, – линейный оператор, DA - область определения оператора, а RA – область значений.
Определение 6. Оператор А называется обратимым , если для любого элемента у, принадлежащего RA , уравнение Ах=у имеет единственное решение.
Если оператор А обратим, то каждому элементу у, принадлежащему RA , можно поставить в соответствие единственный элемент х, принадлежащий DA и являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным оператором к оператору А и обозначается А-1 .
Теорема 4.
Для того чтобы линейный оператор имел ограниченный обратный оператор необходимо и достаточно, чтобы выполнялось неравенство:
, (m>0).
Доказательство:
Достаточность.
Пусть выполняется данное неравенство. Тогда равенство Ax=0 возможно лишь тогда, когда x – нулевой вектор. Получим 0 m*||x||, отсюда ||x|| 0, но так как норма не может быть <0, то x=0. А обращается в ноль лишь на нулевом векторе. Итак, А-1 существует.
Докажем его ограниченность.
y=Ax.
x=A-1 y, норма ||A-1 y||=||x||, но ||x|| ||Ax||=||y||.
Отсюда ||A-1 y|| ||y||, то есть обратный оператор существует и он ограничен.
Если за m возьмем наибольшую из возможных, то получим, что ||A-1 ||=.
Необходимость.
Пусть от А имеется ограниченный обратный А-1 на нормированном пространстве.
Итак, ||A-1 y|| М||y||.
Подставляем значение y и значение A-1 y,получим ||x|| M||Ax|| (М всегда можно считать положительным числом).
Отсюда ||Ax|| ||x||.
Положим =m, получим ||Ax|| m||x||.
т. д-на.
В теории операторов важную роль играет понятие спектра оператора. Рассмотрим это понятие сначала для конечномерного пространства.
Определение 7. Пусть А – линейный оператор в n-мерном пространстве Еn . Число λ называется собственным значением оператора А, если уравнение Ах=λх имеет ненулевые решения. Совокупность всех собственных значений называется спектром оператора А, а все остальные значения λ – регулярными. Иначе говоря, λ есть регулярная точка, если оператор , где I – единичный оператор, обратим, При этом оператор (А – λI)-1 , как и всякий оператор в конечномерном пространстве, ограничен. Итак, в конечномерном пространстве существуют две возможности:
1) уравнение Ах=λх имеет ненулевое решение, то есть λ является собственным значением для оператора А; оператор (А – λI)-1 при этом не существует;
2) существует ограниченный оператор (А – λI)-1 , то есть λ есть регулярная точка.
В бесконечном пространстве имеется еще и третья возможность, а именно: