Дипломная работа: Некоторые линейные операторы
||А|| K, для K, подходящего для (1), то есть |А(x)| ||А||||x||, где
||А|| = xE.
Между ограниченностью и непрерывностью линейного оператора существует тесная связь, а именно справедлива следующая теорема.
Теорема 3.
Для того, чтобы линейный оператор А действующий из Ex в Ey был ограничен, необходимо и достаточно, чтобы оператор А был непрерывен.
Необходимость :
Дано: А – ограничен;
Доказать: А – непрерывен;
Доказательство:
Используя теорему 1 достаточно доказать непрерывность А в нуле.
Дано, что ||Аx|| K||x||.
Докажем, что А непрерывен в нуле, для этого должно выполняться >0, >0 что ||x||< ||Ax|| < .
Выберем так, чтобы K*||x|| < , ||x|| < , (К>0), значит = , тогда если ||x||< , то ||Аx|| K||x|| < K =
Непрерывность в нуле доказана, следовательно доказана непрерывность в точке.
Достаточность :
Дано: А – непрерывен;
Доказать А – ограничен;
Доказательство:
Допустим, что А не ограничен. Это значит, что числу 1 найдется хотя бы один соответственный вектор x1 такой, что ||A x1 || > 1|| x1 ||.
Числу 2 найдется вектор x2 , что ||A x2 || > 2|| x2 || и т.д.
Числу n найдется вектор xn , что ||A xn || > n|| xn ||.
Теперь рассмотрим последовательность векторов yn = , где
||yn || = .
Следовательно последовательность yn 0 при n .
Так как оператор А непрерывен в нуле, то Аyn 0, однако
||Аyn || = ||A|| = ||Axn || > n|| xn || = 1, получаем противоречие с Аyn 0, то есть А – ограничен
Для линейных операторов ограниченность и непрерывность оператора эквивалентны.
Примеры.
1) Покажем, что норма функционала[5] F(y) = в C[ a , b ] , где p(x) – непрерывная на [a,b] функция, равна .
По определению 5: ||F|| = |F(x)| = ||.