Дипломная работа: Некоторые линейные операторы

2. непрерывный;

3. ограниченный, с нормой ||A|| = |g(t)|;

4. обратим при , для любого ;

5. спектр оператора состоит из всех l = g(t); спектр данного оператора является непрерывным;

6. резольвента имеет вид .


§5. Оператор интегрирования

Рассмотрим оператор интегрирования, действующий в пространстве непрерывных функций - C[ a , b ] , определенных на отрезке [a,b], заданный следующим образом:

Аf(t) = .

f(t) – функция, непрерывная на [a, b],t [a,x]; x [a,b]; a,bR;

Поскольку - интеграл с переменным верхним пределом, есть функция от верхнего предела – F(x), a x b; Следовательно можно утверждать, что А – оператор.

Проверим оператор A на линейность. По определению 1:

1) Аксиома аддитивности: A(f+g) = A(f) + A(g).

A(f+g) = = + = A(f) + A(g).

2) Аксиома однородности: A(kf) = kA(f).

A(kf) = = k* = kA(f).

Исходя из свойств интеграла:

1. интеграл от суммы, есть сумма интегралов;

2. вынесение const за знак интеграла.

Можно сделать вывод: оператор А является линейным.

3) Проверим, является ли А непрерывным, для этого воспользуемся определением непрерывности:

p (fn (t), f0 (t)) 0 p (A fn (t), Af0 (t)) 0.

Оператор А, действует в пространстве C[ a , b ] , в котором расстояние между функциями определяется следующим образом:

p (fn (t), f0 (t)) = | fn (t) - f0 (t)|.

Решение:

p (A fn (t), Af0 (t)) = | - |.

| - | = || = p (fn (t), f0 (t)) = p (fn (t), f0 (t)) (x-a) 0

axb.

Таким образом p (A fn (t), Af0 (t)) 0. следовательно по определению 2 оператор А непрерывен.

4) Непрерывный оператор является ограниченным (теорема 3):

|| || ||

|| = 0; || = |b-a|.

0 || |b-a|.

5) Оператор А ограниченный, следовательно у него можно найти норму. Найдем норму оператора А (используя определение ||A||=|A(f)|):

||A|| = |A(f)| = || = (x-a);

К-во Просмотров: 385
Бесплатно скачать Дипломная работа: Некоторые линейные операторы