Дипломная работа: Разностные схемы для уравнения переноса на неравномерных сетках
Подставляя разложение (31) в шi , получим
Отсюда имеем
т.е. первый порядок аппроксимации. Для сходимости рассмотрим решение задачи для zi :
Множитель при л > 0. Выражая zi через z0 , имеем
Отсюда │zi │≤ M∙h, т.е. схема имеет первый порядок точности. Таким же образом можно показать, что схема с весом
имеет первый порядок аппроксимации и при выполнении условий устойчивости имеет место сходимость и притом порядок точности совпадает с порядком погрешности аппроксимации.
1.7 Неравномерная сетка
1.7.1 Построение сеточной области
Пусть исходная область ={}. Ее аппроксимируем сеточной областью:
, - средний шаг}- сетка по х;
, - средний шаг}- сетка по t;
Тогда искомая сетка есть - неравномерная сетка.
На этой сетке аппроксимируем дифференциальные операторы:
- правая разностная производная по х; (1)
-сеточная функция;
- левая разностная производная по х; (2)
- центральная разностная производная по х; (3)
- аппроксимация с весом ; (4)
Аппроксимация первой производной по t имеет вид:
- правая разностная производная по t; (5)
- левая разностная производная по t; (6)
- центральная разностная производная по t; (7)
Аппроксимация второй производной по х и по t имеет вид: