Дипломная работа: Разностные схемы для уравнения переноса на неравномерных сетках

Отсюда имеем

Рассмотрим фиксированную точку и выберем последовательность сеток таких, чтобы = i0 ∙ h, т.е. является узлом сетки при h→0.

Вычислим значение у в этой точке y() = yi 0 =si 0 y0 . Так как │s│< 1 при б>0

и любых h, то│ y()│≤│si 0 │y0 │< │y(0)│ при любом h. Из этого

неравенства видно, что решение разностной схемы (19) непрерывно зависит от вход€ных данных. В таких случаях говорят, что разностная схема устойчива по входным данным (по начальным условиям и по правой части).

Пример 2. Имеем уравнение

, (20)

Точным решением задачи (20) является функция

Отсюда следует неравенство

, (21)

при л>0.

Для устойчивости вычислительных алгоритмов решения задачи (20) должно быть выполнено условие вида (21) т.е.

(22)

Задачу (20) аппроксимируем явной схемой Эйлера

(23)

.

Выражая решение схемы (23) через начальное условие, имеем


Неравенство (22) будет выполнено, если

т.е. .

Таким образом, явная схема Эйлера условно устойчива.

Пример 3. Для численного решения задачи (20) используем неявную схему Эйлера

(24)

Отсюда

К-во Просмотров: 407
Бесплатно скачать Дипломная работа: Разностные схемы для уравнения переноса на неравномерных сетках