Дипломная работа: Разностные схемы для уравнения переноса на неравномерных сетках
при
Схема (24) абсолютно устойчива, ибо выполнено условие (22) при любом h.
Пример 4. Задачу (20) аппроксимируем схемой с весом
(25)
Отсюда имеем
Условие (22) будет выполнено, если
т.е
Отсюда получаем
Схема абсолютно устойчива при
и
т.е. схема (25) условно устойчива при
1.6 Аппроксимация и сходимость
Для того, чтобы выяснить, с какой точностью приблизили функцию u=u(x) с помощью функции y(x), мы должны их сравнить. Пусть uh значение функции u(x) на сеточной области , т.е. uh Hh .
Рассмотрим погрешность решения разностной схемы (14), (15), которая аппроксимирует на сетке дифференциальную задачу (12), (13).
Введем функцию погрешности решения
zh = yh –uh ,
где yh – решение схемы (14), (15), uh - решение задачи (12), (13) на сетке ͞wh . Подставив yh = zh +uh в линейную задачу (14), (15), получим для zh задачу того же вида, что и (14), (15):
(26)
(27)
(28)
Функции (28) называются погрешностью аппроксимации задачи (12), (13), схемой (14), (15) на решение задачи (12), (13).
Будем говорить, что решение разностной схемы (14), (15) сходится к решению задачи (12), (13), если
Hh = Hh → 0 при h→0.
Разностная схема сходится со скоростью О(hn) или имеет n-ый порядок точности, если при достаточно малом h ≤ h0 выполняется неравенство
Hh =Hh ≤ M ∙ hn ,
где M > 0, не зависит от h, n > 0.