Дипломная работа: Разработка системы управления многосвязных систем автоматического регулирования исполнительного уровня
,
Разомкнутая МСАР находится на апериодической границе устойчивости.
Построим обобщенный годограф Найквиста. Произведем замену и представим определитель матрицы возвратных разностей в виде суммы действительной и мнимой части:
Построим обобщенный годограф Найквиста (рисунок 1.12) с помощью программного пакета MathCAD (Приложение 3б).
Рисунок 1.12 – Обобщенный годограф Найквиста
а) годограф на высокочастотном участке
б) годограф на среднечастотном участке
в) общий вид годографа
Если разомкнутая система находится на апериодической границе устойчивости, то для устойчивости замкнутой МСАР необходимо и достаточно, чтобы обобщенный годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывал точку с координатами (0; j 0).
Так как обобщенный годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, охватывает точку с координатами (0; j 0) (рисунок 1.12 в), то замкнутая МСАР является неустойчивой.
2) Метод эквивалентирования относительно первого канала
Рассмотрим детализирванную до уровня одномерных звеньев структурную схему МСАР (Рисунок 1.13)
Рисунок 1.13 – Детализирванная до уровня одномерных звеньев структурная схема МСАР
Изобразим структурною схему с учетом только внешнего воздействия первого канала регулирования, тогда второй канал регулирования представим эквивалентным звеном (Рисунок 1.14).
Определим передаточную функцию эквивалентного звена:
(1.18)
Рисунок 1.14 – Структурная схема с эквивалентным второму каналу регулирования звеном
Запишем передаточную функцию разомкнутой системы
(1.19)
Для устойчивости системы необходимо и достаточно, чтобы все корнии ее характеристического уравнения были левыми.
Запишем характеристическое уравнение замкнутой системы:
С помощью программного пакета MathCad найдем его корни (Приложение 4)
,