Дипломная работа: Системы с постоянной четной частью

Т.к. и существуют или не существуют одновременно, то , и . Таким образом, производная четной функции есть функция нечетная.

б) – нечетная функция.

Т.к. и существуют или не существуют одновременно, то , и . Таким образом, производная нечетной функции есть функция четная.

Свойство 2 Если – нечетная функция, то .

Доказательство. Поскольку – нечетная функция, то

Подставив вместо получаем


Откуда следует

2. Основные сведения из теории отражающих функций

Рассмотрим систему

(1)

считая, что её правая часть непрерывна и имеет непрерывные частные производные по . Общее решение этой системы в форме Коши обозначим через . Через обозначим интервал существования решения

Пусть

Определение: Отражающей функцией системы (1) назовем дифференцируемую функцию

определяемую формулой

(2)

или формулами

Для отражающей функции справедливы свойства:

К-во Просмотров: 637
Бесплатно скачать Дипломная работа: Системы с постоянной четной частью