Дипломная работа: Системы с постоянной четной частью

Согласно основной лемме любое продолжимое на решение системы (1) будет -периодическим. Четность произвольного решения системы (1) следует из тождеств

справедливых в силу свойства 1) отражающей функции.

Справедливы следующие утверждения [4].

Теорема 5 Пусть все решения системы (1)-периодичны и однозначно определяются своими начальными данными. Тогда отражающая функция этой системы -периодична по

Теорема 6 Пусть система (1)-периодична по а ее решения однозначно определяются своими начальными данными и существуют при всех Если, кроме того, отражающая функция этой системы -периодична по то все решения системы (1) периодичны с периодом

Аналогичная теорема имеет место в том случае, когда не все решения системы (1) продолжимы на отрезок При этом заключение о -периодичности можно сделать лишь для тех решений, которые существуют при всех

Из -периодичности отражающей функции следует -периодичность всех продолжимых на решений периодической системы (1). Из -периодичности отражающей функции не следует, вообще говоря, -периодичность решений -периодической системы, хотя следует их -периодичность.

Не следует думать, что если все решения -периодической системы -периодичны, то ее отражающая функция обязана быть -периодической. Этому противоречит пример уравнения

В случае, когда , т.е. когда система (1) вырождается в уравнение, верна

Теорема 7 Пусть уравнение (1)-периодично по а его решения однозначно определяются своими начальными данными и существуют при всех Тогда для того, чтобы все решения уравнения (1) были -периодичны, необходима и достаточна -периодичность по отражающей функции этого уравнения.


3. Системы чёт-нечет

Рассмотрим систему

(8)

Будем считать, что всюду в дальнейшем эта система удовлетворяет условиям:

а) Функция непрерывно дифференцируема, и поэтому, задача Коши для системы (8) имеет единственное решение;

б) Правая часть системы (8) -периодична по .

Лемма 8 Пусть система (8) удовлетворяет условиям а) и б). Тогда продолжимое на отрезок решение этой системы будет -периодическим тогда и только тогда, когда

где

– есть нечетная часть решения .

Доказательство. Пусть -периодическое решение системы (8). Тогда

Необходимость доказана.

Пусть – решение системы (8), для которого . Тогда

и поэтому

К-во Просмотров: 645
Бесплатно скачать Дипломная работа: Системы с постоянной четной частью