Дипломная работа: Системы с постоянной четной частью


системы (1) верно тождество

(3)

2) Для отображающей функции любой системы выполнены тождества:

(4)

3) Дифференцируемая функция

будет отражающей функцией системы (1) тогда и только тогда, когда она удовлетворяет уравнениям в частных производных

(5)

и начальному условию

(6)

Уравнение (5) будем называть основным уравнением (основным соотношением) для отражающей функции.

Доказательство. Свойство 1) следует непосредственно из определения (2). Для доказательства свойства 2) заметим, что согласно свойству 1) для любого решения системы (1) верны тождества


Из этих тождеств в силу того, что через каждую точку проходит некоторое решение системы (1), и следуют тождества (5).

Приступим к доказательству свойства 3). Пусть – отражающая функция системы (1). Тогда для неё верно тождество (3). Продифференцируем это тождество по и воспользуемся тем, что – решение системы (1), и самим тождеством (3). Получим тождество

из которого в силу произвольности решения следует, что – решение системы (5). Начальное условие согласно свойству 2) так же выполняется.

Пусть некоторая функция удовлетворяет системе (5) и условию (6). Так как этой системе и этому условию удовлетворяет так же и отражающая функция, то из единственности решения задачи (5) – (6) функция должна совпадать с отражающей функцией. Свойство 3) доказано.

Лемма Основная лемма 3 Пусть правая часть системы (1)-периодична по , непрерывна и имеет непрерывные частные производные по переменным . Тогда отображение за период для системы (1) можно найти по формуле

и поэтому решение


системы (1) будет -периодическим тогда и только тогда, когда есть решение недифференциальной системы

(7)

В качестве следствия этой леммы докажем следующее предположение.

Утверждение 4 Пусть непрерывно дифференцируемая функция -периодична и нечетна по , т.е.

и . Тогда всякое продолжение на отрезок решение системы (1) будет -периодическим и четным по .

К-во Просмотров: 639
Бесплатно скачать Дипломная работа: Системы с постоянной четной частью