Дипломная работа: Системы с постоянной четной частью
определенной в области содержащей гиперплоскость , для которой выполнены тождества (4), при всех и достаточно малых существует дифференциальная система
отражающая функция которой совпадает с а общий интеграл задается формулой
Следствие 12 Дважды непрерывно дифференцируемая функция
является отражающей функцией хотя бы одной дифференциальной системы тогда и только тогда, когда для нее выполнены тождества (4).
Системы, существование которых гарантируется теоремами 10 и 11 , называются соответственно простой и простейшей .
Теорема 13 Пусть
простейшая система, тогда
где – отражающая функция системы (1).
Доказательство. Если система простейшая,
Теорема 14 Пусть
есть отражающая функция некоторой дифференциальной системы, решения которой однозначно определяются своими начальными данными, а для непрерывно дифференцируемой функции
выполнены тождества (4). Тогда для того, чтобы в области функция совпадала с необходимо и достаточно, чтобы рассматриваемая система имела вид
или вид
где
есть некоторая непрерывная вектор-функция.
Будем говорить, что множество систем вида (1) образует класс эквивалентности, если существует дифференцируемая функция