Дипломная работа: Теореми Чеви і Менелая та їх застосування

Запишемо теорему Менелая для трикутника і прямої :


.

,

Запишемо теорему Менелая для трикутника і прямої :

,

,

Відповідь: , .

Задача 1.8 Ортоцентр трикутника (ортоцентр – точка перетину висот) ділить висоту навпіл. Довести , що , де – кути трикутника.

Доведення.


????? - ????? ?????????, - ???? ?????????, .

Запишемо теорему Менелая для трикутника і прямої :

Виходячи з умови .

З .

З .

З .

Підставимо знайдені залежності в теорему Менелая:

,

,

,

що і треба було довести.

Задача 1.9 З вершини прямого кута трикутника проведено висоту , а в трикутнику

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • К-во Просмотров: 555
    Бесплатно скачать Дипломная работа: Теореми Чеви і Менелая та їх застосування