Дипломная работа: Теореми Чеви і Менелая та їх застосування

Поділимо почленно рівність (1.3.7) на рівність (1.3.8):

,

,

Оскільки , то

(**)

Використовуючи співвідношення (*) і (**), запишемо:

.


Аналогічно одержимо

.

Використовуючи властивості площ, маємо:

Відповідь: 3:7.

2-й спосіб

Запишемо теорему Менелая для трикутника і прямої :

(1.3.9)

Запишемо теорему Менелая для трикутника і прямої :

(1.3.10)

Використовуючи (1.3.9) і (1.3.10) дістанемо:

Аналогічно

А далі розв’язуємо, як в 1-му способі.

Відповідь: 3 : 7.

Задача 1.4 Висота рівнобедреного трикутника з основою поділена на три рівні частини. Через точку та точки поділу проведено прямі, які ділять бічну сторону, що дорівнює см, на три відрізки. Знайти ці відрізки.

К-во Просмотров: 556
Бесплатно скачать Дипломная работа: Теореми Чеви і Менелая та їх застосування