Контрольная работа: Анализ систем автоматического управления
Sampling time: 0.24
>> step(W1)
Рис 2.3
На рис.2.4 представлена диаграмма Боде исследуемой дискретной системы с отмеченными на ней запасами устойчивости по амплитуде и фазе.
Рис. 2.4
3.Исследование нелинейной непрерывной системы автоматического управления
Задание:
Используя метод гармонической линеаризации нелинейного элемента, определить на основе частотного способа возможность возникновения автоколебаний в замкнутой системе, их устойчивость, амплитуду и частоту.
Исходные данные:
Структура нелинейной САУ представлена на рис. 3.1, где НЭ— нелинейный элемент, W ( s ) - передаточная функция непрерывной линейной части системы.
Рис 3.1
1. Передаточная функция W 0 ( s ) берется из пункта 1, как передаточнаяфункция скорректированной системы с соответствующими числовыми коэффициентами. Нелинейный элемент НЭ имеет нелинейную характеристику u = f ( e ) которая для всех заданий является характеристикой идеального реле:
где с =2.
Приближенная передаточная функция нелинейного элемента для случая идеальное реле имеет вид:
где a – амплитуда искомого периодического режима, а >0.
2. На комплексной плоскости строим характеристику:
Это прямая, совпадающая с отрицательным отрезком действительной оси, вдолькоторой идет оцифровка по амплитуде а0 = 0, a 1 ,a 2 , … . В том же масштабе накомплексной плоскости строится АФЧХ разомкнутой системы W 0 ( jw ) приизменении частоты от 0 до + inf.
Передаточная функция скорректированной системы:
На рис.3.2 (выделен интересующий фрагмент) пунктиром отмечена АФЧХ
рис.3.2