Контрольная работа: Математические модели задач и их решение на ЭВМ

ЗАДАНИЕ № 1

Из пункта А в пункт Б ежедневно отправляются пассажирские и скорые поезда. Наличный парк вагонов разных типов, из которых ежедневно можно комплектовать данные поезда, и количество пассажиров вмещающихся в каждом вагоне приведены в таблице.

Пропускная способность дороги не позволяет пройти в день более чем 10 поездам.

Определить оптимальное число скорых и пассажирских поездов, при которых будет перевозиться максимальное число пассажиров.

В данном случае неизвестными являются число скорых и пассажирских поездов Х1 и Х2

Составим математическую модель этой задачи.

Максимальное число пассажиров перевозимых данными поездами обозначим L. Тогда целевая функция будет иметь вид:

L= 0*(1*х1+1*х2)+58*(5*х1+8*х2)+40*(6*х1+4*х2)+32*(3*х1+1*х2) – max


Ограничение на искомое решение следующее:

1*х1+1*х2

5*х1+8*х2

6*х1+5*х2

3*х1+1*х2

Х1+х2<=10

ЗАДАНИЕ №2.

1. решить задачу геометрическим методом.

2. составить двойственную задачу для исходной.

1 +5х2 ≥10

1 +2х2 ≥10

1 +4х2 ≤24

1 +3х2 ≤24

Х1 -2х2 ≤4

Z=3х12 →мах

Х1 ≥0;Х2 ≥ 0.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 545
Бесплатно скачать Контрольная работа: Математические модели задач и их решение на ЭВМ