Контрольная работа: Новый метод решения кубического уравнения
Решение
1. Определяем значение D1 = -
-→D1 = - [4( 40.275 – 46.9225)3+(- 642.83825 + 827.65125 – 218.7)2]/27
-→D1 = - [- 1174.9923236875+1148.328769]/27= 0.987539062500
2. Определяем значение D2 = - 2( 3c - )
-→ D2 = - 2(40.275 – 46.9225 ) = 13.2950
В этом случае имеют место дробные значения для D1 и D2 . Предлагаемый метод решения куб.уравнения оперирует только с целыми числами, поэтому необходимо умножить на 10k .
При этом значение степени k должно определяться
- для D2 числом знаков в мантиссе ( для данного примера k2 = 4 )
- для D1 =3∙ (число знаков в мантиссе для D2 ). -→ k1 = 3∙ k2 ( для данного примера k1 = 12 ).
Для дальнейшего рассмотрения используем два числа
- D11 = 987539062500
- D21 = 132950.
3. Далее задача заключается в том, чтобы определить три значения таких целых чисел ( А,Б,Д), при которых выполняются равенства D 21 = А2 + Б2 + Д2 и D 11 = А2 ∙ Б2 ∙ Д2 .
Для нахождения значений чисел А,Б,Д можно использовать две методики
- найти все варианты представления числа D21 в виде суммы трех квадратов. При этом один из этих вариантов будет соответствовать условию D 21 = А2 + Б2 + Д2 и D 11 = А2 ∙ Б2 ∙ Д2 .
- найти все варианты представления числа D11 в виде произведения трех квадратов. При этом один из этих вариантов будет соответствовать условию D 21 = А2 + Б2 + Д2 и D 11 = А2 ∙ Б2 ∙ Д2 .
Вариант D 11 = А2 ∙ Б2 ∙ Д2 следует считать более удобным.
Для рассматриваемого примера
D11 = 987539062500 = 2502 ∙ 2652 ∙ 152
D21 = 132950 = 2502 + 2652 + 152 .
4. В расчетах п.2 была произведена операция перехода к целым числам путем умножения соответствующих чисел на множители k1 и k2 . Совершая обратную операцию, получим
(2mn)11 = 2.5, (2mn)12 = - 2.5,
(2mn)21 = 2.65, (2mn)22 = - 2.65,
(2mn)31 = 0.15, (2mn)32 = - 0.15.
5 . Определяем значение нулей ( корней ) исходного уравнения
5.1 3 x 2 + 2 bx + c = - (2 mn )11( 2 mn )21
-→ 3x2 - 2∙(6.85)∙ x + 13.425 = (2.5)∙(2.65)-> 3x2 – 13.7x + 6.8 = 0.
-→ X1 = 4 – это один из корней исходного уравнения!