Контрольная работа: Новый метод решения кубического уравнения
В этом уравнении имеет место неприводимый случай формулы Кардана.
Решение
1. Определяем значение D1 = -
-→D1 = - [4(966 – 900)3+(- 54000 + 86940 – 31536)2]/27 = - [ 1149984 + 1971216]/27= - 115600
2. Для дальнейших расчетов общий знак “ - “ не имеет значения, поэтому будем рассматривать D1 как положительную величину.
-→D1 = [( g 1 - g 2 )2 + h 2 ]2 ∙ 4 h 2 = 115600 = 2∙2∙2∙2∙5∙5∙17∙17 = 4∙2∙2∙5∙5∙17∙17= 4∙ 52 ∙342
Здесь число 115600 представлено в виде всех сомножителей с целью наглядности формирования множителей в соответствии с формулой [( g 1 - g 2 )2 + h 2 ]2 ∙ 4 h 2 . Тогда можно записать
h = 5 , (g1 - g2 )2 + h2 = 34 -→ (g1 - g2 )2 = 34 – 25 = 9 -→( g1 - g2 ) = ± 3
3. Для определения g1 и g2 воспользуемся свойством корней исходного уравнения
- b = X1 +X2 +X3 -→ - ( - 30) = g1 + g2 + hi + g2 – hi = g1 + 2 g2 -→ 30 = g1 + 2g2.
4. Теперь, имея два уравнения ( g1 - g2 )= ± 3 и (g1 + 2 g2 ) = 30, можно определить значения g1 и g2
Пусть ( g1 - g2 )= - 3 -→ g2 = g1 – 3 -→ g1 + 2(g1 – 3) = 30 -→ 3g1 = 24 -→ g 1 = 8 -→g 2 = 11.
-→ X 1 = 8, X 2 = 11 + 5 i , X 3 = 2 – 5 i
Расчет закончен !
Новый метод решения кубических уравнений
Из анализа результатов вышеприведенных примеров можно предложить новый метод решения кубических уравнений..Для корней кубического уравнения могут
иметь место следующие случаи
- три корня имеют одинаковые действительные значения
- три корня имеют действительные значения, при этом два из них являются сопряженными, т.е. если X1 = g + h, то X2 = g – hили X1 = (g + h), то X2 = (g – h), Наличие множителя обусловлено численным значением коэффициента b при X для X3 + bX2 + cX + d = ( X – X1 )∙( X2 + b X + c ) = 0.
- один корень имеет действительное значение, два других- комплексные и сопряженные, т.е. если X1 = g + ih, то X2 = g – ih.
Первый случай – тривиальный . (x – a )3 = x3 – 3ax2 +3a2 x – a3 = 0. Определение корней для остальных случаев является непростой задачей.
Три разных действительных корня
Пусть имеем один действительный корень ( обозначим его X 1 = g 1 ) и два сопряженных действительных корня. Если исходное уравнение разделить на разность ( X – g1 ), то получим квадратное уравнение вида
[ X – (g2 + h)]∙[ X – (g2 - h)] = 0
-→ X2 – 2g2 X + (g2 2 – h2 ) = 0
-→ X1 = g1 , X2,3 = g2 ± h -→ X2 = ( g2 - h), X3 = ( g2 + h)
-→ (2mn)1 = ( X1 - X2 ) = (g1 - g2 ) + h
(2mn)2 = ( X1 - X3 ) = (g1 - g2 ) – h
(2mn)3 = ( X2 - X3 ) = g2 - h - g2 – h = - 2h