Контрольная работа: Новый метод решения кубического уравнения

→ X11 = , X1 = 3

X21,22 = g21,22 = [ - b ± ] → g21,22 = [ 41 ± ]= [ 41 ± ]

→ X21 = 19, X22 = X 2 = X 3 = 19

Расчет закончен !

Вывод основных формул

Задано исходное уравнение x3 + bx2+ cx + d = 0 . Необходимо найти значения корней.

1. Определяем значение D 1 = -

2. Разделим

3. Представляем число в виде произведения двух квадратов = [( g 1 - g 2 )2 - h 2 ]2 h 2 .

4. Меньший множитель принимаем за h 2 [( g 1 - g 2 )2 - h 2 ]2 =

( g 1 - g 2 ) = (6)

5. Для получения второго уравнения используем свойство корней исходного уравнения

Из исходного уравнения b = - (X1 + X2 + X3 ) → b = - (g1 + g2 - h + g2 +h )

b = - ( g 1 + 2 g 2 ) (7)

6. Решая систему из двух уравнений (26) и (27) в итоге получим

X1 = g1 = - b )

X11 = g11 = - b ) (8)

X12 = g12 = - b ) (9)

Таким образом получили значение одного из корней исходного уравнения.

7.g2 = -

g21 = -

g 22 = -

8. Определяем два остальных корня

X21 = g21 + h

X22 = g22 + h

X31 = g21 – h

X32 = g22 – h

Этими формулами определены по два варианта каждого из трех корней. Среди этих вариантов имеют место и корни исходного кубического уравнения.

Задача решена!

К-во Просмотров: 487
Бесплатно скачать Контрольная работа: Новый метод решения кубического уравнения