Контрольная работа: Новый метод решения кубического уравнения

-→D1 = - [4(63 – 36)3+(- 432 + 1134 – 1404)2]/27 = - [ 78732 + 492804 ]/27= 21168

→ D1 =[( g 1 - g 2 )2 - h 2 ]2 ∙ 4 h 2 = 21168 = 4∙22 ∙72 = 4∙142 = 4∙

→ D1 =

Пусть h 1 2 =

X1 = g11 = - b ) = + 6) = = 4

X1 = 4

g21 = - = - = 1

X2,3 = g21 + ih1 = 1 ± 2iX2 = 1 + 2i , X3 = 1 - 2i

Сравните метод решения и результат с первоисточником.

[И.Н.Бронштейн. К. А.Семендяев .Справочник по математике. М. Наука.1980. Стр. 220 ]

Вывод новых формул

Основные свойства корней квадратного и кубического уравнений выражаются известными формулами Виета. Использование системы mn параметров дает возможность получения новых, ранее неизвестных, формул отражающих свойства корней указанных уравнений.

Рассмотрим кубическое уравнение и проведем анализ формулы (1)

(2 mn )2 + ( 3 x + b )(2 mn ) + 3 x 2 + 2 bx +с = 0

Если в это уравнение подставить значение любого из корней исходного кубического уравнения, то получим

(2 mn )2 + ( 3 xi + b )(2 mn ) + 3 xi 2 + 2 bxi +с = 0

(2 mn )2 + ( 3 x 1 + b )(2 mn ) + 3 x 1 2 + 2 bx 1 +с = 0

(2 mn )2 + ( 3 x 2 + b )(2 mn ) + 3 x 2 2 + 2 bx 2 +с = 0

(2 mn )2 + ( 3 x 3 + b )(2 mn ) + 3 x 3 2 + 2 bx 3 +с = 0

Таким образом, исходное кубическое уравнение распадается на три квадратных уравнения. При этом для каждого положительного значения (2 mn ) I обязательно найдется отрицательное значение (2 mn ) j . Поэтому общая сумма всех корней вида (2 mn ) будет равна нулю.

( 3 x 1 + b ) + ( 3 x 2 + b ) + ( 3 x 3 + b ) = 0 → 3( x 1 + x 2 + x 3 ) = - 3 b

→ ( x 1 + x 2 + x 3 ) = - b .

Таким образом получили строгое доказательство одного из уравнений Виета.

Рассмотрим любых два уравнения, например,

(2 mn )2 + ( 3 x 1 + b )(2 mn ) + 3 x 1 2 + 2 bx 1 +с = 0

(2 mn )2 + ( 3 x 2 + b )(2 mn ) + 3 x 2 2 + 2 bx 2 +с = 0.

Здесь в качестве свободных членов имеем 3 x 1 2 + 2 bx 1 +с и 3 x 2 2 + 2 bx 2 +с. Их сумма равна

→ Σ = 3(x 1 2 + 3 x 2 2 ) + 2b ( x 1 + x 2 ) + 2 с. Расчеты показывают, что

3(x 1 2 +x 2 2 ) + 2b ( x 1 + x 2 ) + 2 с = ( x 1 - x 2 )2

К-во Просмотров: 483
Бесплатно скачать Контрольная работа: Новый метод решения кубического уравнения