Контрольная работа: Основная задача механики

Здесь Vx , Vy , ax , ay – проекции скорости и ускорения точки на соответствующие оси координат.

Найдем их, дифференцируя по времени уравнения движения (1)

(3)

По найденным проекциям определяем модуль скорости:

V=Ö(Vx 2 + Vy 2 ); (4)

и модуль ускорения точки:

а =Ö(ах 2у 2 ). (5)

Модуль касательного ускорения точки

аt =|dV/dt|, (6)

аt = |(Vx ax +Vy ay )/V| (6’)

Знак “+” при dV/dt означает, что движение точки ускоренное, знак “ - “ - что движение замедленное.

Модуль нормального ускорения точки

ап = V2 /p; (7)

p – радиус кривизны траектории.

Модуль нормального ускорения точки можно найти и следующим образом:

an =Ö(а2 -at 2 ); (8)

После того как найдено нормальное ускорение по формуле (8), радиус кривизны траектории в рассматриваемой точке определяется из выражения:

p=V2 / an . (9)

Результаты вычислений по формулам (3)-(6), (8), (9) для момента времени t1=1с приведены ниже в таблице

Координаты

см

Скорость

см/с

Ускорение, см/с2

Радиус

см

х у Vx Vy V ax ay a at an p
2.5 -2.5Ö3 -5p/Ö3 -5p/3 10p/3 -20.04 13.76 24.3 10.5 21.9 5

Ниже на рисунке показано положение точки М в заданный момент времени.


Дополнительное задание:

z=1.5tx=5cos(pt2 /3); y= -5sin(pt2 /3); t1=1 (x и y – в см, t и t1 – в с).

Найдем скорости и ускорения дифференцируя по времени уравнения движения


По найденным проекциям определяем модуль скорости:

V=Ö(Vx 2 + Vy 2 +Vz 2 );

К-во Просмотров: 455
Бесплатно скачать Контрольная работа: Основная задача механики