Контрольная работа: Примеры решения эконометрических заданий
х2 = (1*(1,1 + 1,2 + 0,4 + 0,2 + 0,1 + 0,1 + 0,1 + 0,2+ 0,33)) / 9
х2 = 0,414
у = (1*(15,7 + 16,7 + 17,5 + 18,8 + 18,0 + 18,3 + 18,5 + 19,1 + 18,0)) / 9
у= 17,844
3. Рассчитаем Var для рядов: Var = 1 / nΣn i = 1 * ( xi – xi )2
(x1 – x1 ) | -4,967 | -1,467 | 2,533 | 1,933 | -1,967 | 4,133 | 2,933 | 1,233 | -4,367 |
Σ = 87,120 Σ/n = 9,680 |
(x1 – x1 )2 | 24,668 | 2,151 | 6,418 | 3,738 | 3,868 | 17,084 | 8,604 | 1,521 | 19,068 | |
(x2 – x2 ) | 0,686 | 0,786 | -0,014 | -0,214 | -0,314 | -0,314 | -0,314 | -0,214 | -0,084 |
Σ = 1,483 Σ/n = 0,165 |
(x2 – x2 )2 | 0,470 | 0,617 | 0,000196 | 0,046 | 0,099 | 0,099 | 0,099 | 0,046 | 0,007 | |
(y – y) | -2,144 | -1,144 | -0,344 | 0,956 | 0,156 | 0,456 | 0,656 | 1,256 | 0,156 |
Σ = 9,202 Σ/n = 1,022 |
(y– y)2 | 4,599 | 1,310 | 0,119 | 0,913 | 0,024 | 0,208 | 0,430 | 1,576 | 0,024 |
4. Вычислим Cov: Cov (x,y) = 1 / n Σ n i = 1 * (xi – x)*(yi – y)
(x1 -x1 )(y-y) | 10,651 | 1,679 | -0,873 | 1,847 | 1,923 | 1,549 | -0,679 | Σ = 17,673 | Σ/n = 1,964 |
(x2 –x2 )(y-y) | -1,470 | -0,899 | 0,005 | -0,205 | -0,206 | -0,269 | -0,013 | Σ = -3,250 | Σ/n = -0,361 |
(x1 -x1 )(x2 –x2 ) | -3,405 | -1,152 | -0,037 | -0,415 | -0,922 | -0,264 | 0,369 | Σ = -6,508 | Σ/n = -0,723 |
Ответ: Var1 = 9,680 Cov1 = 1,964
Var2 = 0,165 Cov2 = -0,361
Var3 = 1,022 Cov3 = -0,723
Задача 2.
Определить коэффициенты при объясняющих переменных, для линейной регрессии, отражающих зависимость потребления картофеля от его производства и импорта, используя данные из задачи 1.
Найти: b1,2 = ?
Решение:
1. Определим Var рядов объясняющих переменных:
Var(х1 ) = 9,680
Var(х2 ) = 0,165
2. Определим Cov:
Cov(x1 ;у) = 1,964
Cov(х2 ;у) = -0,361
Cov(х1 ;х2 ) = -0,723
3. Вычислим b1 и b2 по формулам:
b1 = Cov(x1 ;у)* Var(х2 ) - Cov(х2 ;у)* Cov(х1 ;х2 )/ Var(х1 )* Var(х2 ) – (Cov(х1 ;х2 ))2
b2 = Cov(х2 ;у)* Var(х1 ) - Cov(x1 ;у)* Cov(х1 ;х2 )/ Var(х1 )* Var(х2 ) - (Cov(х1 ;х2 ))2