Контрольная работа: Производная и ее применение для решения прикладных задач
то есть и
.
3. В точке х=0 функция имеет разрыв в точке х=0.
При этом
4. Находим производную: и приравниваем ее к нулю:
. Точка
будет критической.
Проверим достаточные условия экстремума в точке . Так как знаменатель производной всегда положителен, то достаточно проследить за знаком числителя. Получаем:
при
и
при
. Следовательно, в точке
функция имеет минимум, ее значение в точке
.
5. Точек пересечения с осью ОY нет, так как данная функция не определена при х=0. Чтобы найти точки пересечения кривой с осью ОХ, нужно решить уравнение .
Тогда или
.
Получим, что при функция убывает; х=
y=0;
функция убывает; при
функция убывает; при х=
функция имеет минимум y=3; при
функция возрастает.
График данной функции представлен на рисунке.
Кривая, рассмотренная в этой задаче называется «Трезубец Ньютона».
3.2 Нахождение наибольшего и наименьшего значения функции, решение прикладных задач (задач на оптимум)
Пример 1
Из бревна, имеющего радиус R, сделать балку наибольшей прочности.
Решение:
Составляем функцию, выражающую необходимое условие.
В данной задаче высота балки (представляющей собой прямоугольник, вписанный в окружность радиуса R и ширины х), равна . Поэтому прочность такой балки равна
. При этом х изменяется от 0 до 2R.
Функция обращается в нуль при х=0 и х=2R и положительна между этими значениями. Значит она имеет максимум, лежащий между 0 и 2R. Но производная этой функции
обращается в нуль на отрезке
лишь при
. Это и есть оптимальное значение ширины b балки. Высота h балки такой ширины равна
и отношение
равно
. Именно такое отношение высоты вытесываемой балки к ее ширине предписывается правилами производства строительных работ.
Пример 2
Требуется построить открытый цилиндрический резервуар вместимостью . Материал имеет толщину d. Какими должны быть размеры резервуара (радиус основания и высота), чтобы расход материала был наименьшим?
Решение.
Радиус основания внутреннего цилиндра обозначим через х, высоту внутреннего цилиндра через h. Объем дна и стенки резервуара
С другой стороны, по условию , откуда
Подставляя в (*), находим
Полученную функцию нужно исследовать на экстремум при х>0:
Единственный положительный корень производной – это точка Она и дает решение задачи. При этом