Контрольная работа: Производная и ее применение для решения прикладных задач
В данном случае будем считать х=5, а . Изменение функции
3.5 Нахождение величины угла между прямыми и кривыми.
Углом между графиками функций и в точке их пересечения называется угол между касательными к их графикам в этой точке (рис.).
Пример 1.
Найти угол между графиками функций и
в точке их пересечения (с положительной абсциссой).
Решение.
Абсциссы точек пересечения данных графиков удовлетворяют уравнению
И тем самым следующей системе:
Отсюда находим, что графики функций пересекаются в двух точках, абсциссы которых равны 0 и 2. Найдем тангенсы углов наклона касательных к обоим графикам функций в точке с абсциссой, равной 2. Имеем
Отсюда и Так как , то уравнения касательных к графикам функций и в точке (2;2) соответственно имеют вид
и
т.е.
и
Следовательно величина угла между касательными удовлетворяют уравнению
и тем самым графики функций и в точке с абсциссой х=2 пересекаются под углом, равным
3.6 Разложение на множители и упрощение выражений.
Пример 1.
Разложить на множители выражение
.
Решение:
Считая х переменной величиной, рассмотрим функцию . Имеем .
Так как ,
то отсюда заключаем, что
.