Контрольная работа: Расчет показателей эконометрики

Таблица 1.1 Расчетная таблица

y x yx x2 y2 Аi
1 35,8 9,4 336,520 88,360 1281,640 41,559 -5,759 16,087
2 22,5 2,5 56,250 6,250 506,250 22,248 0,252 1,122
3 28,3 3,9 110,370 15,210 800,890 26,166 2,134 7,541
4 26,0 4,3 111,800 18,490 676,000 27,285 -1,285 4,944
5 18,4 2,1 38,640 4,410 338,560 21,128 -2,728 14,827
6 31,8 6,0 190,800 36,000 1011,240 32,043 -0,243 0,765
7 30,5 6,3 192,150 39,690 930,250 32,883 -2,383 7,813
8 29,5 5,2 153,400 27,040 870,250 29,804 -0,304 1,032
9 41,5 6,8 282,200 46,240 1722,250 34,282 7,218 17,392
10 41,3 8,2 338,660 67,240 1705,690 38,201 3,099 7,504
Итого 305,6 54,7 1810,790 348,930 9843,020 305,600 0 79,027
Среднее значение 30,56 5,47 181,079 34,893 984,302 - - -
7,098 2,23 - - - - - -
50,381 4,973 - - - - - -

Система нормальных уравнений составит

Используем следующие формулы для нахождения параметров:

= 2,799

305,6 - 2,799*5,47 = 15,251

Уравнение парной линейной регрессии:

= 15,251 + 2,799* x

Величина коэффициента регрессии b = 2,799 означает, что с ростом инвестиций в основной капитал на 1 тыс. руб. доля ВРП на душу населения растет в среднем на 2,80 %-ных пункта.

Знак при свободном члене уравнения положительный, следовательно связь прямая.

3. Рассчитаем линейный коэффициент корреляции:

или

где , - средние квадратические отклонения признаков x и y, соответственно

Так как = 2,23, = 7,098, то

= 0,879, что означает тесную прямую связь рассматриваемых признаков

Коэффициент детерминации составит

= 0,773

Вариация результата (y) на 77,3% объясняется вариацией фактора (x). На долю прочих факторов, не учитываемых в регрессии, приходится 22,7%.

4. Средняя ошибка аппроксимации () находится как средняя арифметическая простая из индивидуальных ошибок

= =7,9%,

(см. последнюю графу расчетной табл. 1.1.).

Ошибка аппроксимации показывает хорошее соответствие расчетных () и фактических (y) данных: среднее отклонение составляет 7,9%.

5. Стандартная ошибка регрессии рассчитывается по следующей формуле:

,

где m – число параметров при переменных x.

В нашем примере стандартная ошибка регрессии

= 3,782

6. Оценку статистической значимости построенное модели регрессии в целом производится с помощью F-критерия Фишера. Фактическое значение F-критерия для парного линейного уравнения регрессии определяется как

F =

К-во Просмотров: 518
Бесплатно скачать Контрольная работа: Расчет показателей эконометрики