Контрольная работа: Решение задач по высшей математике
Их ранги равны . Система совместна. Выделим следующую подсистему
Считая и известными, решение подсистемы находим по формулам Крамера . Оно имеет вид
; ,
где , - могут принимать произвольные значения. Пусть , где Тогда ответом будет служить множество
Задача 7
Даны начало и конец вектора . Найти вектор и его длину.
Решение
Имеем , откуда или .
Далее , т.е. .
Задача 8
Даны вершины треугольника , и . Найти с точность до угол при вершине .
Решение
Задача сводится к нахождению угла между векторами и :
, ; . Тогда , .
Задача 9
Даны вершины треугольника , и . Вычислить площадь этого треугольника.
Решение
Так как площадь треугольника равна половине площади параллелограмма, построенного на векторах и как на сторонах, т.е. , то . Найдем векторы и :
; ; .
Вычислим их векторное произведение:
,
,
Откуда
. Следовательно, (кв. ед.).
Задача 10
Даны вершины треугольной пирамиды , , и . Найти ее объем.