Контрольная работа: Высшая математика 4
ЗАДАЧА 1. Вычислить пределы функций а) —д):
а) 1..
►==.
2. .
►.====0.
3. ..
►.====-∞.
б) .
Решение.==
==
===
Предел вычислен подстановкой
Предел не может быть вычислен подстановкой , поскольку в результате подстановки получается неопределенность .
в) .
Анализ задачи. Подстановка числа 2 вместо показывает, что пределы числителя и знаменателя равны нулю. Следовательно, нам потребуется раскрыть неопределенность . Для этого можно либо провести тождественные преобразования выражения , либо применить правило Лопиталя.
Решение. Выражение является сопряженным по отношению к выражению , а выражение - по отношению к . Умножая числитель и знаменатель дроби на произведение сопряженных выражений ()·(), и используя формулу разности квадратов , получаем
Другое решение задачи. Воспользуемся правилом Лопиталя
|
Анализ задачи. В данном случае, непосредственное применение теоремы о пределе частного невозможного, поскольку, как показывает подстановка числа. -3 вместо x и предел числителя и предел знаменатели равны пулю.
и
Таким образом, рассматриваемый предел представляет собой неопределённость вида и для решения задачи требуется провести тождественные преобразования выражения, находящегося под знаком предела.
Решение. Разложим числитель и знаменатель на множители, пользуясь следующей теоремой: если— корни квадратного трехчлена, то,
= Решаем квадратное уравнение, находя его дискриминант D.
Отсюда,
Аналогично,
Поэтому,
Преобразуем выражение находящиеся под знаком предела:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--