Контрольная работа: Высшая математика

Рассчитаем оптимальные значения параметров системы.

Найдем оптимальный размер партии:

q = = » 1735 шт.

Найдем число поставок в год:

Nо = S / q = 62000 / 1735 = 35,7 » 36 раз

Найдем период между поставками:

То = 360 / 36 = 10 дней

Найдем издержки пополнения:

ИП о = СП * N = 1650 * 36 = 59400 руб.

Найдем издержки хранения:

ИХ о = CX * = 68 * 1735 / 2 = 58990 руб.

Найдем суммарные издержки

Ио = ИП о + ИХ о = 59400 + 58990 = 118390 руб.


Построим график запасов:

Рис. 1

Рассмотрим функции издержек.

Годовые издержки пополнения запасов ИП (q) = СП * являются обратной гиперболической функцией, которая монотонно убывает с увеличением размера партии q. С возрастанием q скорость убывания падает.

Годовые издержки хранения ИХ (q) = CX * являются линейной функцией, которая монотонно возрастает с увеличением размера партии q. Минимальное значение функции нулевое. С возрастанием q скорость увеличения издержек хранения не изменяется.

Суммарные издержки являются суммой двух предыдущих функций. В силу этого, функция сначала убывает – когда издержки пополнения запасов существенно выше издержек хранения, а после выравнивания размеров издержек начинает возрастать – когда издержки хранения превышают размер издержек пополнения. Функция суммарных издержек имеет один минимум в районе примерного равенства входящих в нее функций.

Построим графики изменения трех видов издержек как функций размера партииq:

Рис..2

Задача 3

Фирма собрала сведения об объемах продаж своей продукции (Yi ) за 6 последних месяцев (Xi =1...6) и представила их в виде таблицы. Перед отделом маркетинга поставлена задача аппроксимировать эмпирические данные подходящей функцией, чтобы использовать ее для целей краткосрочного прогнозирования (на один и два месяца вперед, Xj =7, 8).

Таблица 1 - Данные о помесячных объемах продаж фирмы

Y1 Y2 Y3 Y4 Y5 Y6
12 14 13 11 14 13 16

Указания к задаче 3:

1) выполните аппроксимацию эмпирических данных линейной функцией у = a0 x + a1 ;

2) выведите нормальные уравнения метода наименьших квадратов для линейной функции;

К-во Просмотров: 545
Бесплатно скачать Контрольная работа: Высшая математика