Контрольная работа: Высшая математика
Решение:
|
|
|
Из уравнения окружности:
Тогда четверти круга равна:
Тогда площадь круга равна:
Задача 12
Используя определенный интеграл, вычислите площадь, ограниченную кривой y=lnx, осью ОХ и прямой х=е. Нарисуйте чертеж.
Решение:
Найдем точки пересечения y=lnx =0 (y=lnx с осью ОХ: y=0)=>, тогда искомая площадь:
Задача 13
Вычислите площадь сегмента, отсекаемого прямой y=3–2x от параболы y=x2 . Нарисуйте чертеж.
Решение:
Найдем точки пересечения y= x2 =3–2x=> x2 +2x–3=0 =>, тогда искомая площадь:
Задача 14
Вычислить площадь между кривой y=1/x2 и осью ОХ, располагающуюся вправо от линии x=1. Нарисуйте чертеж.
Решение:
Искомая площадь:
Вычислить приближенное значение интеграла по формуле трапеции, принимая n = 5.
Формула трапеций имеет вид
Длина интервала