Контрольная работа: Застосування сплайн-функцій до розв’язування задач інтерполяції
Автор:
Вишемірська Тетяна Володимирівна
Четвертий курс, денна форма навчання, математичний факультет
Науковий керівник:
Доктор фізико-математичних наук, професор
Стеблянко Павло Олексійович
Черкаси 2010
Зміст
Вступ
1.В-сплайни
1.1Базис із В-сплайнів
1.2В-сплайни нульового степеня та рекурентна форма запису В-сплайнів вищих порядків
1.3Лінійні В-сплайни
1.4Квадратичні В-сплайни
2. Кубічні В-сплайни
2.1Формули задання кубічних B-сплайнів
2.2Базис у просторі кубічних сплайнів
2.3 Задачі інтерполяції з граничними умовами першого та другого роду
2.4.Апроксимація кубічними В-сплайнами
2.5Практичність вивчення кубічних В-сплайнів у вищих навчальних закладах
3. Практична частина
3.1Задача №1
3.2Задача №2
Висновки
Список використаних джерел
Вступ
Сплайн-інтерполяція на сьогоднішній день є одним із найточніших методів наближення. В теорію наближень сплайни ввійшли зовсім недавно і відразу ж зайняли в ній досить важливе місце. Буквально протягом кількох років для сплайнів були розв’язані апроксимаційні задачі, на розв’язання яких для поліномів були потрачені десятиліття. З подальшим вивченням і застосуванням сплайн-функцій, знадобилося їх певне спрощення, для полегшення розрахунків. Саме тоді і з’явилися В-сплайни, які як виявилося не тільки є простішими для обчислень, але й дають більшу точність наближення, що є дуже важливим при розв’язуванні практичних задач.
Актуальність: Сьогодні сплайн-функції відіграють дуже важливу роль, вони входять в курс «Чисельні методи», як додатковий метод інтерполяції, а також використовуються в курсі «Рівняння математичної фізики» для розв’язування нерозв’язних диференціальних рівнянь; з допомогою сплайнів і В-сплайнів (в основному кубічних) розв’язуються (з великою точністю) ті задачі, які не можна розв’язати іншими, відомими, методами.
В-сплайн – це крива з неперервними старшими похідними до n -ої, де n – порядок сплайна.
Мета курсової роботи : Розглянути кубічні В-сплайни, а також лінійні та квадратичні В-сплайни, форми їх запису та формули для розрахунків інтерполяційних задач, рекурентні формули для представлення В-сплайнів 1-го, 2-го, 3-го та вищих порядків. З’ясувати практичність застосування Кубічних В-сплайнів у ВНЗ при розв’язуванні задач інтерполяції. Застосувати на практиці отримані знання.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--