Курсовая работа: Алгебраические расширения полей

В самом деле, в случае равенства a +сb = ai +сbk было бы

с = (ai -a)/(b-bk ) 0M

что противоречило бы выбору числа c.

Пусть F1 = P (g) и F1 — кольцо полиномов от x. Пусть h = f(g - cx) — полином из F1 [x] (g, c0P(g) = F1 ). Покажем, что x-b есть наибольший общий делитель полиномов h и g в кольце F1 [x]. Так как g(b) = 0, то x-b делит g в E[x]. Далее, в силу (1)

h(b) = f(g-cb) = f(a) = 0.

Поэтому x-b делит полином h в E[x]. Таким образом, x-b есть общий делитель h и g в кольце E[x].

Докажем, что g и h в С не имеет корней, отличных от b. В самом деле, допустим, что bk , k0{2 ,..., n}, есть их общий корень. Тогда h(bk ) = f(g - сbk ) = 0. Следовательно, найдется такой индекс i0{1 ,..., m}, что g = ai +cbk (k>1), а это противоречит (2). На основании этого заключаем, что x-b есть наибольший общий делитель g и h в E[x]. Поскольку x - b — нормированный полином, то отсюда следует, что x - b является наибольшим общим делителем g и h в кольце F1 [x]. Поэтому

(x-b) 0F1 [x] и b0F1 = P(g).

Кроме того, a = g - cb0F1 . Таким образом,

F = P(a, b)ÌF1 , F1 ÌF.

Следовательно, F = P(g). Далее, так как g (как и всякий элемент из F) есть алгебраический элемент над Pи F= P (g), то поле F= P (g) является искомым простым алгебраическим расширением поля P.

2.4. Поле алгебраических чисел.

В классе подполей поля комплексных чисел одним из наиболее важных является поле алгебраических чисел.

Определение. Алгебраическим числом называется комплексное число, являющееся корнем полинома положительной степени с рациональными коэффициентами.

Отметим, что алгебраическое число есть любое комплексное число, алгебраическое над полем Q. В частности, любое рациональное число является алгебраическим.

Теорема 2.8. Множество A всех алгебраических чисел замкнуто в кольце E = +С, +, —, •, 1, комплексных чисел. Алгебра A = +А, +, —, •, 1, является полем, подполем поля E.

Доказательство. Пусть a и b — любые элементы из А. По следствию 2.6, поле Q(a, b) является алгебраическим над Q. Поэтому числа a+b, -а, ab, 1 являются алгебраическими, т. е. принадлежат множеству A. Таким образом, множество А замкнуто относительно главных операций кольца E. Поэтому алгебра A — подкольцо кольца E — является кольцом.

Кроме того, если a —ненулевой элемент из А, то a-1 0Q (a, b) и поэтому а-1 принадлежит А. Следовательно, алгебра A есть поле, подполе поля E.

Определение. Поле A = +А, +, —, •, 1, называется полем алгебраических чисел.

Пример.

Показать, что число a= является алгебраическим.

Решение. Из a= следует a-.

Возведем обе части последнего равенства в третью степень:

a3 -3a2 9a-3=2

или

a3 +9a-2=3(a2 +1).

Теперь обе части равенства возводим во вторую степень:

a6 +18a4 +81a2 -4a3 -36a+4=27a4 +54a2 +27

или

a6 -9a4 -4a3 +27a2 -36a-23=0.

К-во Просмотров: 2082
Бесплатно скачать Курсовая работа: Алгебраические расширения полей