Курсовая работа: Алгебраические расширения полей

m

f(x) = J( xpe -bi )

1

Пусть ai — какой-нибудь корень многочлена xpe -bi . Тогда xi pe = bi ,

xpe -bi = xpe – ai pe = (x-ai ) pe .

Следовательно, ai является ре -кратным корнем многочлена xpe -bi и

m

f(x) = J( x -ai ) ре .

1

Все корни многочлена f(x) имеют, таким образом, одну и ту же кратность ре .

Степень m многочлена y называется редуцированной степенью многочлена f(x) (или корня ai ); число e называется показателем многочлена f (x) (или корня ai ) над полем D. Между степенью, редуцированной степенью и показателем имеет место соотношение

n = m ре ,

где m равно числу различных корней многочлена f(x).

Если q — корень неразложимого в кольце D[x] многочлена, обладающего лишь простыми корнями, то q называется сепарабельным элементом над D или элементом первого рода над D1 ). При этом неразложимый многочлен, все корни которого сепарабельны, называется сепарабельным. В противном случае алгебраический элемент q и неразложимый многочлен f(x) называются несепарабельными или элементом (соответственно, многочленом) второго рода. Наконец, алгебраическое расширение S, все элементы которого сепарабельны над D, называется сепарабельным над D, а любое другое алгебраическое расширение называется несепарабельным.

В случае характеристики нуль согласно сказанному выше каждый неразложимый многочлен (а потому и каждое алгебраическое расширение) является сепарабельным. Позднее мы увидим, что большинство наиболее важных и интересных расширений полей сепарабельны и что существуют целые классы полей, вообще не имеющих несепарабельных расширений (так называемые «совершенные поля»). По этой причине в дальнейшем все связанное специально с несепарабельными расширениями набрано мелким шрифтом.

Рассмотрим теперь алгебраическое расширение S = D (q). Когда степень n уравнения f(x) = 0, определяющего это расширение, равна степени (S : D), редуцированная степень m оказывается равной числу изоморфизмов поля S в следующем смысле: рассмотрим лишь такие изоморфизмы S@S', при которых элементы подполя D остаются неподвижными и, следовательно, S переводится в эквивалентное поле S' (изоморфизмы поля S над полем D) и при которых поле-образ S' лежит вместе с полем S внутри некоторого общего для них поля W. В этих условиях имеет место теорема:

При подходящем выборе поля W расширение S=D(q) имеет ровно m изоморфизмов над D и при любом выборе поля W поле S не может иметь более m таких изоморфизмов.

Доказательство. Каждый изоморфизм над D должен переводить элемент q в сопряженный с ним элемент q' из W. Выберем W так, чтобы f(x) разлагался над W на линейные множители; тогда окажется, что элемент q имеет ровно m сопряженных элементов q,q', ... При этом, как бы ни выбиралось поле W, элемент q не будет иметь в нем более m сопряженных. Заметим теперь, что каждый изоморфизм D(q)@D(q') над D полностью определяется заданием соответствия q®q'. Действительно, если q переходит в q' и все элементы из D остаются на месте, то элемент

3ak qk (ak 0D)

должен переходить в

3ak qNk

а этим определяется изоморфизм.

В частности, если q — сепарабельный элемент, то m = n и, следовательно, число изоморфизмов над основным полем равно степени расширения.

Если имеется какое-то фиксированное поле, содержащее все рассматриваемые поля, в котором содержатся все корни каждого уравнения f(x) = 0 (как, например, в поле комплексных чисел), то в качестве W можно раз и навсегда взять это поле и поэтому отбросить добавление «внутри некоторого W» во всех предложениях об изоморфизмах. Так всегда поступают в теории числовых полей. Позднее мы увидим, что и для абстрактных полей можно построить такое поле W.

Обобщением приведенной выше теоремы служит следующее утверждение:

Если расширение S получается из D последовательным присоединением m

алгебраических элементов a1 , ..., am , причем каждое из ai ,- является корнем

неразложимого над D(a1 , ..., ai-1 ) уравнения редуцированной степени n'i , то

m

К-во Просмотров: 2083
Бесплатно скачать Курсовая работа: Алгебраические расширения полей