Курсовая работа: Аналогія: теорема Піфагора на площині і в просторі
Дістанемо рівняння
Розв’язуючи його, одержимо:
Тоді
У другому випадку відповідь буде та сама
Рис. 4.2
Рис. 5
Задача 5
На сторонах рівнобедреного прямокутного трикутника з катетом побудовані квадрати зовні трикутника. Центри цих квадратів з'єднані між собою прямими лініями. Знайти площу одержаного трикутника.
Розв'язання
Нехай
ΔАВС, C = 90°, АС = ВС = b,
ABMN,ACDF, BCKL- квадрати
Неважко переконатись в тому, що ΔO1 O2 O3 – рівнобедрений, O1 C – висота(рис.5).
Тоді.
За теоремою Піфагора
Таким чином,
Розділ 2. Теорема Піфагора у просторі або стереометричний аналог теореми Піфагора
Метод аналогії є одним з ефективних і розповсюджених методів математики. Його застосування приводить до плідних і часто до неочікуваних результатів.
Деякі властивості трикутника і тетраедра схожі, а деякі геометричні поняття, пов’язані з трикутником , мають просторові аналоги: наприклад, сторона трикутника – грань тетраедра, довжина сторони – площа грані, вписане коло – вписана сфера, площа – об’єм,бісектриса кута – бісектор двогранного кута тощо. Багато теорем про трикутники, якщо замінити в їх формулюванні планіметричні терміни відповідними стереометричними і конкретно сформулювати, то вони перетворюються в теореми про тетраедри. Однією з таких є аналог теореми Піфагора в стереометрії.
Означення. Якщо три ребра, які виходять з однієї вершини тетраедра, попарно ортогональні, то тригранний кут, що визначається ними, називається прямим, а тетраедр – прямокутним.
Теорема (стереометричний аналог теореми Піфагора).У прямокутному тетраедрі квадрат площі грані, що лежить проти прямого тригранного кута, дорівнює сумі квадратів площ решти граней.