Курсовая работа: Асимптотика решений дифференциальных уравнений
Свойство 8, Для любой функции y (х, у, z ), непрерывной в G, справедливо равенство
где
и интегрирование ведется при произвольно фиксированных
Действительно, вдоль траекторий (2.3), в силу (2.7) и свойства 6, имеем:
что дает:
Перейдем к непосредственному изучению системы (2.1). Заменим переменные х, 2/,%,..., Zi переменными ф, /?, z,,..., z \ по формуле:
что, в силу (2.10), дает:
Преобразование (2.13) — невырожденное в рассматриваемой области поскольку там
(см. свойство 7). В силу (2.12), замена (2.13) переводит систему (2.1) в следующую:
Система (2.14) является линейной алгебраической по отношению к функциям
с определителем
и поэтому она единственным образом разрешима относительно этих функций. По правилу Крамера имеем:
или, в силу свойств 7, 6, 5:
Пусть при