Курсовая работа: Асимптотика решений дифференциальных уравнений

Свойство 8, Для любой функции y (х, у, z ), непрерывной в G, справедливо равенство

где

и интегрирование ведется при произвольно фиксированных

Действительно, вдоль траекторий (2.3), в силу (2.7) и свойства 6, имеем:

что дает:

Перейдем к непосредственному изучению системы (2.1). Заменим переменные х, 2/,%,..., Zi переменными ф, /?, z,,..., z \ по формуле:


что, в силу (2.10), дает:

Преобразование (2.13) — невырожденное в рассматриваемой области поскольку там


(см. свойство 7). В силу (2.12), замена (2.13) переводит систему (2.1) в следующую:

Система (2.14) является линейной алгебраической по отношению к функциям

с определителем

и поэтому она единственным образом разрешима относительно этих функций. По правилу Крамера имеем:


или, в силу свойств 7, 6, 5:

Пусть при

К-во Просмотров: 511
Бесплатно скачать Курсовая работа: Асимптотика решений дифференциальных уравнений