Курсовая работа: Чисельні методи розвязування крайових задач для звичайних диференціальних рівнянь

,

…….. …….. ……..

де - наближений розв'язок задачі Коші в точці для вибраного значення .

Метод прицілювання є універсальним і використовується для розв'язання нелінійних диференціальних рівнянь -ого порядку. Слід зазначити, що довільний вибір початкового наближення може привести до того, що задача (11.18) виявиться жорсткою навіть у випадку, коли задача (11.1), (11.2) є добре обумовленою.

Наближені аналітичні методи:

3.Метод колокацій:

У методі колокацій розв'язок крайової задачі (11.4), (11.5) шукається у вигляді функції

. (11.36)


де , - лінійно незалежні, двічі диференційовані базисні функції, визначені на відрізку. Функція повинна задовольняти задані граничні умови (11.5):

(11.37,а)

а функції, - відповідні однорідні граничні умови, тобто

,

,

. (11.37,б)

Через лінійність граничних умов функція у (11.36) задовольняє граничним умовам (11.24) для будь-яких значень . Наприклад, у точці маємо

.

Аналогічно для отримаємо

Суть методу колокацій полягає в тому, що для заданих точок на відрізку , названих вузлами колокації, підбирають значення так, щоб отримана при цьому функція (11.36) задовольняла рівняння (11.4) у кожному з вузлів колокації:


,(11.38)

де

, .

Покладемо

, (11.39)

тоді (11.39) матиме стандартний вигляд системи лінійних алгебраїчних рівнянь:

, (11.40)

К-во Просмотров: 363
Бесплатно скачать Курсовая работа: Чисельні методи розвязування крайових задач для звичайних диференціальних рівнянь