Курсовая работа: Чисельні методи розвязування крайових задач для звичайних диференціальних рівнянь
Точність розв'язку крайової задачі методом колокацій залежить від типу базисних функцій . У конкретних задачах вибір цих функцій слід здійснювати з урахуванням апріорної інформації про розв'язки задачі або на основі емпіричних даних. Нехай - це лінійна функція
, (11.41)
параметри якої визначимо таким чином, щоб вона задовольняла неоднорідні граничні умови (11.5), тобто з системи рівнянь
,
. (11.42)
Функції можна задати у вигляді:
, . (11.43)
Очевидно, що за будь-яких функція (11.43) задовольняє умову (11.37, а). Значення , за якого буде задовольнятися друга умова (11.37, б), таке:
. (11.44)
Якщо в умовах (11.37, а, б) , то можливий інший вибір, а саме:
,
. (11.45)
4.Метод Гальоркіна
Як і в методі колокацій, у методі Гальоркіна наближений розв'язок крайової задачі (11.4), (11.5) шукаємо у вигляді
(11.48)
де , - лінійно незалежні, двічі диференційовані базисні функції, визначені на відрізку . Функція повинна задовольняти задані граничні умови (11.37, а), а функції , - відповідні однорідні граничні умови (11.37, 6).
Необхідно, щоб система базисних функцій , була ортогональною на відрізку , тобто
при і ,
і повною. Остання вимога означає, що не повинно існувати ніякої іншої відмінної від нуля функції, яка ортогональна до всіх функцій , .
Використовуючи наближений розв'язок (11.48) знайдемо нев'язку:
(11.49)
Коефіцієнти мають бути такими, щоб значення інтеграла від квадрата нев'язки
було найменшим.
Це досягається лише в тому випадку, коли нев'язка ортогональна до всіх базисних функцій . Умову ортогональності запишемо у вигляді:
,
або
, (11.50)
Таким чином, отримаємо систему лінійних алгебраїчних рівнянь для обчислення коефіцієнтів
5.Метод найменших квадратів