Курсовая работа: Деление двоичных чисел в прямом, обратном и дополнительном кодах

(G-) доп = 1, ε1, ε 2, … , ε n(4)

где

0, ε1, ε 2, … , ε n = 1 - 0, γ1, γ2, … , γn(4a)

Установим связь между самим отрицательным числом G- и числами (G-)обр и (G-)доп , представляющими его обратный и дополнительный коды.

Вычитая (1а) из (3), имеем:

(G-) обр - G-= 1, σ1, σ 2, … , σ n – ( - 0, γ1, γ2, … , γn) = 1,11…1 = 2 – 2-n (так как σi + γi= 1)

Следовательно,

(G-) обр = G-+ 2 - 2-n (4b)

Вычитая (1a) из (4), имеем:

(G-) доп - G- = 1, ε1, ε 2, … , ε n - ( - 0, γ1, γ2, … , γn) (5)

Учитывая (4a), получаем:

(G-) доп = G-+ 2 (5а)


Из (5) и (5а) следует:

(G-) доп = (G-) обр + 2-n

где n — число разрядов в числе. Таким образом, дополнительный код может быть получен из обратного путем добавления к нему единицы младшего разряда.

Рассмотрим представление нуля. В процессе вычислений могут возникнуть «положительный» и «отрицательный» нули:

+ 0,00…0 ; - 0,00…0

Представление «положительного» нуля одинаково для прямого, обратного и дополнительного кодов:

(+ 0) пр = 0,00…0

Отрицательный нуль изображается: в прямом коде

(- 0) пр = 0,00…0

в обратном коде

(- 0) обр = 1,11…1

в дополнительном коде

(- 0) доп = 1,11…1 + 2-n = 0,00…0

так как перенос из разряда знака теряется.

Используя обратный или дополнительный код, можно операции вычитания и сложения чисел различных знаков свести к арифметическому сложению кодов чисел.

Рассмотрим использование обратного кода при алгебраическом сложении двух двоичных чисел G и Q, когда одно из них или оба числа отрицательны. Для этого случая может быть сформулировано следующее правило (предполагаем, что модуль алгебраической суммы меньше единицы).

При алгебраическом сложении двух двоичных чисел с использованием обратного кода положительные слагаемые представляются в прямом коде, а отрицательные - в обратном и производится арифметическое суммирование этих кодов, включая разряды знаков, которые при этом рассматриваются как разряды целых единиц. При возникновении переноса из разряда знака единица переноса прибавляется к младшему разряду суммы кодов (такой перенос называется круговым или циклическим). В результате получается алгебраическая сумма в прямом коде, если эта сумма положительна, и в обратном коде, если она отрицательна.

К-во Просмотров: 297
Бесплатно скачать Курсовая работа: Деление двоичных чисел в прямом, обратном и дополнительном кодах