Курсовая работа: Дифференциальные уравнения
Следовательно:
Разделяя переменные и вновь интегрируя, получим:
Повторяем процедуру в третий раз и получаем искомое выражение для y
Ответ:
Задача 11. Найти общее решение дифференциального уравнения:
Решение:
Данное уравнение не содержит х в явном виде
Предположим, что откуда
Тогда исходное уравнение будет выглядеть так:
Разделим переменные и проинтегрируем выражение:
Но. Тогда
Однако: . Поэтому разделим переменные и проинтегрируем выражение:
Выясним значение С2 :
Следовательно:
Ответ:
Задача 12. Найти общее решение дифференциального уравнения: