Курсовая работа: Инвариантность стационарного распределения трехузловой сети массового обслуживания

Рассмотрим работу обслуживающего прибора (канала, линии). В общем случае длительности обслуживания заявок представляют из себя неотрицательные величины.

предполагают статистически независимой от поступающего на прибор потока заявок.

Определение 1. Говорят, что обслуживание задано, если для любого

Определение 2. Обслуживание называется рекуррентным, если

Определение 3. Рекуррентное обслуживание с

(показательным) обслуживанием с параметром m . Если

Т. е. время обслуживания любой заявки неслучайно (и равно b единиц времени), то обслуживание называют детерминированным или регулярным.

1.4 Классификация систем массового обслуживания

Классификация систем массового обслуживания чаще всего производят по следующим признакам:

входящий поток заявок;

совместное распределение времен обслуживания заявок;

число обслуживающих приборов (каналов, линий);

дисциплина обслуживания, организация очереди и процесса обслуживания.

Существуют следующие типы систем. В системах с потерями заявки, которые при поступлении не находят ни одного свободного прибора, теряются. Для систем с ожиданием возможно ожидание любого числа требований, которые не могут быть обслужены сразу. Для систем с ограниченным числом мест для ожидания ожидать может только число заявок, меньше некоторого фиксированного числа N+1 . Если заявка поступающая в систему, застает очередь из N заявок, она теряется для системы. Для заявок, стоящих в очереди к обслуживающим приборам, с помощью некоторой дисциплины обслуживания определяется, в каком порядке ожидающие заявки выбираются из очереди на обслуживание. Важнейшими дисциплинами обслуживания являются:

FIFO (first in - first out)  заявки обслуживаются в порядке поступления;

LIFO (last in - first out)  инверсионный порядок обслуживания, при котором в первую очередь обслуживается заявка, поступившая последней;

SIRO (service in random order)  очередная заявка выбирается наудачу.

Для обозначения простых процессов обслуживания используются обозначения, предложенные Кендалом:

А/B/n/N.

Буква А характеризует поток требований: например, А=М - пуассоновский поток. Буква B характеризует случайные последовательности длительностей обслуживания на отдельных приборах: B=M - экспоненциальное обслуживание (с одинаковой интенсивностью для разных приборов). Буква n означает количество обслуживающих приборов, буква N - количество мест для ожидания заявок в очереди.

1.5 Марковские системы массового обслуживания

К марковским системам относятся системы, поведение которых в момент времени t может быть описано марковским процессом . В частности, сюда относятся все системы вида M/M/n/N, где . Действительно, пусть обозначает число заявок в системе в момент t . Вероятностное распределение после моментаt определяются:

1) числом заявок в системе в момент t ;

2) моментами поступления заявок после момента t ;

3) моментами окончаний обслуживания заявок после момента t .

В силу того, что входной поток простейший, моменты поступления заявок после момента t не зависят от предыстории системы до момента t . Аналогично, поскольку времена обслуживания показательно распределены, из-за “отсутствия памяти” у показательного распределения моменты окончания обслуживания заявок после момента t не зависят от предыстории системы до момента t . Поэтому вероятностное поведение после момента t зависит только от и не зависит от поведения до момента t . Значит - марковский процесс с конечным или счетным числом состояний. Поэтому для нахождения зависящих от времени вероятностей состояний следует решить систему уравнений Колмогорова для безусловных вероятностей. Если интерес представляет стационарные вероятности, то следует решить систему уравнений равновесия. Для получения уравнений Колмогорова используется предельный переход при D t ® ¥ , который называется D t -методом.

1.6 Марковские сети массового обслуживания

Сеть массового обслуживания представляет собой совокупность систем массового обслуживания, в которой циркулируют заявки, переходящие из одной системы в другую. Предположим, что сеть состоит из n систем массового обслуживания (СМО) каждая из которых имеет неограниченное число мест для ожидания.

Под состоянием сети в момент времени t будем понимать вектор:

К-во Просмотров: 265
Бесплатно скачать Курсовая работа: Инвариантность стационарного распределения трехузловой сети массового обслуживания