Курсовая работа: Инвариантность стационарного распределения трехузловой сети массового обслуживания
При этом существует единственное стационарное распределение, которое совпадает с эргодическим.
Рассмотрим условия этой теоремы.
Регулярность следует из того, что . Неприводимость следует из того, что все состояния сообщаются с нулевым, то есть в любое состояние можно перейти из нулевого (0,0,0) путем поступления, перехода, обслуживания заявок.
В качестве нетривиального решения системы уравнений из теоремы Фостера возьмем . Тогда для эргодичности потребуется, чтобы
Тогда получим,
Условие (1) и есть искомое условие эргодичности. Если это условие будет выполнятся, то будет существовать единственное стационарное распределение, совпадающее с эргодическим.
3. Немарковский случай
3.1 Описание модели
Дана модель открытой сети массового обслуживания, точно такая как марковском случаеТолько предполагается, что длительность обслуживания отдельного требования распределена по произвольному закону. Пусть - произ. функция распределения времени обслуживания -той заявки в -том узле, при этом предполагаем, что выполняется следующее требование:
.
Состояние сети в момент времени t определяется вектором
, где
- остаточное время обслуживания заявки, первой подсистемой, стоящей в -ой позиции.
- остаточное время обслуживания заявки, второй подсистемой, стоящей в -ой позиции.
остаточное время обслуживания заявки, третьей подсистемой, стоящей в -ой позиции.
Система LCFS PR .
Заявка, поступающая в -ый узел, вытесняет заявку с прибора и начинает обслуживаться. Вытесненная заявка идет в начало очереди.
-
не Марковский процесс.
Рассматривается следующий процесс
- остаточное время обслуживания заявки, первой подсистемой, стоящей в -ой позиции.
3.2 Составление дифференциально-разностных уравнений
Рассматриваемслучайный процесс
Где h-некоторый достаточно малый промежуток времени.
Тогда вероятность события А будет равна сумме следующих вероятностей:
1. Если в промежутке времени h в систему не пришло ни одного требования и ни на одном приборе обслуживание не закончилось, то: