Курсовая работа: Исследование линейных и нелинейных систем управления
Нелинейное звено – звено с насыщением (ограничением), статическая характеристика звена изображена на рисунке 22.
Рисунок 22 – Статическая характеристика нелинейного элемента
Параметры звена с насыщением: .
4.1 Оценка возможности возникновения автоколебаний
Для оценки возможности и устойчивости автоколебаний в нелинейной САР по методу Гольдфарба необходимо линеаризовать систему. Применим к нелинейному элементу гармоническую линеаризацию. Тогда передаточная функция звена с насыщением будет иметь вид:
![]() |
где ,
при
, т. е.
.
Таким образом, передаточная функция нелинейного элемента принимает вид:
.
Условие возникновения автоколебаний:
![]() |
или
![]() |
где ,
– передаточная функция линейной части разомкнутой САР с ПИ-регулятором (см. п. 1.4).
Уравнение (19) решаем графически. Для этого необходимо построить на одной комплексной плоскости годограф Найквиста линейной части и годограф Гольдфарба
.
Script 21:
>> A=0.001:0.001:5;
>> Wnon=(2./pi).*(asin(2.4./A)+(2.4./A).*sqrt(1-5.76./A.^2));
>> Z=-1./(Wnon);
>> Re=real(Z);
>> Im=imag(Z);
>> w=0.1:0.01:1;
>> W2=(b3*(j*w).^3+b2*(j*w).^2+b1*(j*w)+b0)./ ...
(a4*(j*w).^4+a3*(j*w).^3+a2*(j*w).^2+a1*(j*w));
>> re=real(W2);
>> im=imag(W2);
>> plot(re,im,Re,Im);grid
Построенные в результате выполнения Script 21 годографы приведены на рисунке 23. На рисунке 24 показана увеличенно область, в которой годографы могут пересекаться. Видно, что годографы не пересекаются, значит автоколебания в системе невозможны.
Рисунок 23 – Годографы линеаризованной САР