Курсовая работа: Исследование моделей
Индекс корреляции: ρxy=√ l-(∑(yi-ŷх) ² ∕ (∑(y-yср)²=√l-9,644/30,2776=0,8256
Связь тесная, но хуже чем в предыдущих моделях.
r²xy=(Pxy)²=(0,82)²=0,6816
А=4,04%, т.е остается на допустимом уровне.
P²xy n-m-l 0,6816 0,6561
F факт = l-P²xy * m = l- 0,6816 *3 = 0,3184 *3 =6,18
Т.к F табл.α=0,05 =10,13 следовательно F факт< F табл отсюда следует, что гипотеза Но принимается. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.
ЗАКЛЮЧЕНИЕ
В заключении проанализируем полученные в курсовой работе результаты исследований и выберем рабочую модель.
Экономический анализ моделей, по результатам исследования получил следующие значения:
Коэффициент парной корреляции rxy= 0,79 у линейной модели;
Индекса корреляции Pxy =0,81 у степенной модели;
Индекса корреляции Pxy =0,80 у показательной модели;
Индекса корреляции Pxy =0,82 у модели равносторонней гиперболы.
Данные индексы показывают, что связь у(х) (среднесуточная производительность труда от стоимости основных производственных фондов) прямая, тесная, высокая.
С экономической точки зрения, все модели достаточно хороши, т.е у всех моделей при увеличении расходов на подготовку и освоение производства – производительность труда увеличивается. Это значит что на данных предприятиях есть резервы для расширения производства, резервы для введения новых технологий с целью увеличения прибыли.
Руководствуясь целью курсовой работы можно сделать вывод, что из всех рассмотренных моделей линейная модель лучше всех отражает экономический смысл. А теперь сравним регрессивные модели по средней ошибке аппроксимации А ,которая показывает, на сколько фактические значения отличаются от теоретических рассчитанных по уравнению регрессии т.е у и ŷ x:
У линейной модели А 1= 4,7%;
У степенной модели А 2= 4,62%;
У показательной модели А 3= 4,77%;
У равносторонней гиперболы А 4 =4,04%.
Средняя ошибка аппроксимации А 1, А 2, А 3, А 4 находятся в допустимом пределе.
Вывод: чем меньше это отличие, тем ближе теоретические значения подходят к эмпирическим данным (лучшее качество модели). По расчетным данным моей работы показательная модель имеет лучшее качество. Сравнивая регрессивные модели по коэффициенту детерминации r²xy линейной, степенной. Показательной и равносторонней гиперболы видим, что статистические характеристики модели равносторонней гиперболы превосходят аналогичные характеристика других моделей, а именно : коэффициент детерминации у линейной модели равен 0,62; у степенной 0,6561; у показательной 0,64 и у равносторонней гиперболы 0,6816. Это означает, что факторы, вошедшие в модель равносторонней гиперболы. Объясняют изменение производительности труда на 68,16%, тогда как факторы, вошедшие в линейную модель на 62%, в показательную на 64% и в степенную на 65,61%, следовательно, значения, полученные с помощью коэффициента детерминации модели равносторонней гиперболы более близки к фактическим. На основании этого, модель равносторонней гиперболы выбирается за рабочую модель в данном примере.
Список используемой литературы:
1) А.М.Беренская – Курс лекций по теме «Математическое моделирование»
2) М.Ш.Кремер –«Исследование операций в эконометрике»
3) И.И.Елисеева - «Практикум по эконометрике»
4) И.И.Елисеева - «Эконометрика»