Курсовая работа: Итерационные методы решения систем нелинейных уравнений
Далее, будем использовать обобщенную теорему о среднем (обобщение на случай вектор- функции формулы конечных приращений Лагранжа)
Здесь матричная норма согласована с векторной, , – точка отрезка, соединяющего х, у.
Поскольку S – выпуклое множество, то . Предположим, что имеет место оценка
, причём . (2.4)
Тогда согласно предыдущему выполняется условие 2) теоремы
.
Таким образом, в случае дифференцируемости условие (2.4) на матрицу Якоби гарантирует условие сжатия для вектор- функции
2.2 Преобразование Эйткена
Поскольку сходимость метода простых итераций линейная, то она довольно медленна. Поэтому полезно уточнять результат процессом Эйткена по трём последним итерациям, чтобы увеличить точность найденного решения и ускорить процесс его нахождения.
Идею преобразования Эйткена поясним на простом примере.
Погрешность найденных значений на каждой итерации равна,. если
найдем предел x через три значения последних приближений xk .
.
т. е.
Построим теперь процесс: , тогда
э
то итерационный процесс для уравнения:
(А)
Рассмотрим порядок сходимости этого процесса
Теперь из (А).
Мы рассматривали процесс простых итераций – процесс первого порядка,
а получили процесс 2 –го порядка.
Легко показать, что если процесс имеет порядок, то схема Эйткена имеет порядок (2r -1). Более того, если процесс. не сходится, то итерационный процесс при выборе начального приближения так, чтобы,. будет сходиться.
2.3 Метод Ньютона