Курсовая работа: Измеримые множества
Так как число e произвольно мало, то
B – A,
и лемма доказана.
Теорема 3. Если открытое ограниченное множество G является суммой конечного числа или счетного множества открытых множеств Gk , G = , то
mG.
Д о к а з а т е л ь с т в о. Пусть Di (i = 1, 2, …) суть составляющие интервалы суммы G. Тогда mG = .
Но откуда, в силу леммы 3, и, стало быть,
(*)
С другой стороны
При этом (что является здесь основным) отдельные слагаемые правой части взаимно не пересекаются (потому что при i¹i`). Значит, мы находимся в условиях применимости теоремы 2, а потому
(**)
Сопоставляя (*) и (**), мы и получаем теорему.
Мера ограниченного замкнутого множества
Пусть F непустое ограниченное замкнутое множество и S наименьший сегмент, содержащий множество F. Как известно, множество CS F открыто и поэтому имеет определенную меру m[CS F]. Это дает возможность установить следующее определение.
Определение 1 . Мерой непустого ограниченного замкнутого множества F называется число
где S=[A, B] есть наименьший сегмент, содержащий множество F.
Для пустого замкнутого множества меру определять не нужно, ибо такое множество открыто и мерой его мы уже условились считать число 0. Кроме того, непустое замкнутое ограниченное множество не может оказаться открытым множеством, так что нет надобности ставить вопрос о связи определений меры открытого и замкнутого множества.
Рассмотрим некоторые примеры.
1. F=[a, b]. В этом случае, очевидно, S=[a, b] и Cs F=0, так, что m [a, b] = b – a, т. е. мера сегмента равна его длине.
2. F есть сумма конечного числа попарно не пересекающихся сегментов
Можно считать, что сегменты перенумерованы в порядке возрастания левых концов; тогда, очевидно,
(k=1, 2, … n-1),
откуда следует, что
Стало быть,
т.е. мера суммы конечного числа попарно не пересекающихся сегментов равна сумме длин этих сегментов .
3. Пусть (Канторово совершенное множество). В этом случае
и откуда
т.е. Канторово совершенное множество имеет меру нуль . Этот факт интересно сопоставить с тем, что мощность множества есть с.
Теорема 1. Мера ограниченного замкнутого множества F не отрицательна.
Д о к а з а т е л ь с т в о. Действительно, если пользоваться обозначениями определения 1, то очевидно Ì (А, В), и по теореме 1, откуда и следует, что
Лемма . Пусть F ограниченное замкнутое множество, содержащееся в интервале D, тогда
D- [ CD F]
Д о к а з а т е л ь с т в о. Множество CD F – открыто, так что лемма имеет смысл. Пусть D=(A, B), а наименьший сегмент, содержащий множество F, есть S=[a, b] (рис.1.).
Тогда легко видеть, что СD F=CD S+Cs F.
Рис. 1
Оба слагаемые правой части открыты и взаимно не налегают. Значит, по свойству аддитивности меры (теорема 2) будет m[CD F]=m[CD S]+m[Cs F].