Курсовая работа: Изучение и анализ различных способов определение тригонометрических функций

Выполнил:

студентка 362 группы

Латфуллина Р.А.

Научный руководитель:

к.ф.-м.н., доцент

Шармина Т.Н.

Тюмень - 2010

Содержание

Введение. 3

Глава1. Функции , как решения некоторых задач Коши. 5

Глава2. Аналитическая теория тригонометрических функций. 16

Список литературы.. 22


Введение

Данная курсовая работа посвящена изучению и анализу различных способов определения тригонометрических функций.

Тригонометрические функции являются важной составной частью содержания математического образования, как в средних, так и в высших учебных заведениях и часто встречаются в различных приложениях математики. С их помощью могут быть построены и изучены математические модели процессов реального мира. Для школьных учителей полезно знать различные подходы к определению и изучению свойств тригонометрических функций. Имеется не так много математической литературы в которой теория элементарных функций излагается последовательно и подробно разными методами. В этом и заключается актуальность данной темы.

Объектом нашего исследования мы выбрали тригонометрические функции. Предметом же является способы их определения.

Целью курсовой работы является изучение и анализ различных способов определения тригонометрических функций.

Для достижения цели мы поставили следующие задачи: изучить математическую литературу, проанализировать способы определения тригонометрических функций и доказать свойства этих функций на основе соответствующего способа определения.

Курсовая работа состоит из введения, двух глав и списка литературы.

В главе 1 излагается способ построения теории функций , , основываясь на использовании теоремы существования и единственности решения соответствующей задачи Коши и простейших сведений из дифференциального и интегрального исчисления. Также в этой главе приведены доказательства основных свойств этих функций.

Глава 2 посвящена рассмотрению теории тригонометрических функций на базе степенных рядов и установлению эквивалентности нового и традиционного определения таких функций.

Также в работе проведены доказательства некоторых свойств тригонометрических функций.

Глава1. Функции , как решения некоторых задач Коши

Для линейного однородного дифференциального уравнения n-го порядка с постоянными коэффициентами теорема существования и единственности решения задачи Коши формулируется следующим образом.

Теорема1 . Дифференциальное уравнение

,

где ; ; ; , имеет на единственное n-кратно дифференцируемое решение , удовлетворяющее условиям

(здесь - произвольно заданные фиксированные действительные числа).

Очевидно, что это решение обладает на непрерывными производными всех порядков.

В частности, когда , указанное в теореме 1 решение тривиально ( на ).

Рассмотрим следующие две задачи Коши:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 382
Бесплатно скачать Курсовая работа: Изучение и анализ различных способов определение тригонометрических функций