Курсовая работа: Изучение и анализ различных способов определение тригонометрических функций
Выполнил:
студентка 362 группы
Латфуллина Р.А.
Научный руководитель:
к.ф.-м.н., доцент
Шармина Т.Н.
Тюмень - 2010
Содержание
Введение. 3
Глава1. Функции , как решения некоторых задач Коши. 5
Глава2. Аналитическая теория тригонометрических функций. 16
Список литературы.. 22
Введение
Данная курсовая работа посвящена изучению и анализу различных способов определения тригонометрических функций.
Тригонометрические функции являются важной составной частью содержания математического образования, как в средних, так и в высших учебных заведениях и часто встречаются в различных приложениях математики. С их помощью могут быть построены и изучены математические модели процессов реального мира. Для школьных учителей полезно знать различные подходы к определению и изучению свойств тригонометрических функций. Имеется не так много математической литературы в которой теория элементарных функций излагается последовательно и подробно разными методами. В этом и заключается актуальность данной темы.
Объектом нашего исследования мы выбрали тригонометрические функции. Предметом же является способы их определения.
Целью курсовой работы является изучение и анализ различных способов определения тригонометрических функций.
Для достижения цели мы поставили следующие задачи: изучить математическую литературу, проанализировать способы определения тригонометрических функций и доказать свойства этих функций на основе соответствующего способа определения.
Курсовая работа состоит из введения, двух глав и списка литературы.
В главе 1 излагается способ построения теории функций , , основываясь на использовании теоремы существования и единственности решения соответствующей задачи Коши и простейших сведений из дифференциального и интегрального исчисления. Также в этой главе приведены доказательства основных свойств этих функций.
Глава 2 посвящена рассмотрению теории тригонометрических функций на базе степенных рядов и установлению эквивалентности нового и традиционного определения таких функций.
Также в работе проведены доказательства некоторых свойств тригонометрических функций.
Глава1. Функции , как решения некоторых задач Коши
Для линейного однородного дифференциального уравнения n-го порядка с постоянными коэффициентами теорема существования и единственности решения задачи Коши формулируется следующим образом.
Теорема1 . Дифференциальное уравнение
,
где ; ; ; , имеет на единственное n-кратно дифференцируемое решение , удовлетворяющее условиям
(здесь - произвольно заданные фиксированные действительные числа).
Очевидно, что это решение обладает на непрерывными производными всех порядков.
В частности, когда , указанное в теореме 1 решение тривиально ( на ).
Рассмотрим следующие две задачи Коши:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--