Курсовая работа: Метод Рунге-Кутты четвертого порядка с автоматическим выбором шага интегрирования решения задачи Коши


Далее последний столбец не может быть нулевым, так как из того, что , следует

в силу условия h). Таким образом, из последней леммы следует, что . Последнее тождество вытекает из равенства , которое является следствием условий a) и b).

Теорема .

Если выполнены предположения , то уравнения (2.4.1) эквивалентны следующим:

(2.4.6)

Доказательство.

Из j) и h) следует, что

. (2.4.7)


Отсюда, в частности, вытекает, что в силу k) .

Решение уравнений (2.4.6). Уравнения a)-e) и k) выражают тот факт, что коэффициенты и являются весами и узлами квадратурной формулы четвертого порядка при и . В силу (2.4.7) возможны следующие четыре случая:

1) . (2.4.8)

Тогда уравнения a)-e) образуют невырожденную линейную систему для определения . Эта система имеет решение:

Остальные три случая с двойными узлами основаны на правиле Симпсона:

2) ;

3) ;

4) .


После того, как выбраны и , получаем из уравнения j), и тогда два уравнения f) и i) образуют линейную систему для определения и .

Определитель этой системы

,

согласно (2.4.7) не равен нулю. Наконец, из того, что находим , и .

Особенно популярными стали два варианта, которые выбрал Кутта в 1901 году. Это случай 3) при и случай 1) при . Оба метода обобщают классические квадратурные формулы, сохраняя их порядок. Первый из них более популярен, однако второй более точен.

Правило 3/8

Классический метод Рунге-Кутты

К-во Просмотров: 510
Бесплатно скачать Курсовая работа: Метод Рунге-Кутты четвертого порядка с автоматическим выбором шага интегрирования решения задачи Коши