Курсовая работа: Метод Рунге-Кутты четвертого порядка с автоматическим выбором шага интегрирования решения задачи Коши

Подставляя в неравенство

выражение (2.7.18) с учетом (2.7.16) и принимая во внимание, что , приходим к такому неравенству:

.

Выражение в квадратных скобках мажорируется следующими интегралами:

, (2.7.20)

. (2.7.21)

Отсюда вытекает справедливость оценки (2.7.18).

b) При втором способе переноса погрешностей рассмотрим кроме (2.7.14) еще одно численное решение, значения которого в соседних узлах связаны равенством

.

Оценим норму разности через . Для формулы метода Рунге-Кутты запишем в следующих обозначениях:

Вычитая из этих формул соответствующие формулы (2.3.1), получим для норм разностей такие оценки:

Оценивание римановых сумм методом a ) и b )

Пусть – постоянная Липшица для функции и пусть . Тогда функция приращения для метода (2.3.1) удовлетворяет неравенству

, (2.7.22)

где

. (2.7.23)

Из (2.7.22) получаем искомую оценку:

, (2.7.24)

и с её помощью оценку перенесенных погрешностей вместо оценки (2.7.19).

Предположим, что для начальных значений, лежащих на точном решении, локальная погрешность удовлетворяет оценке

(2.7.25)

и что в окрестности решения функция приращения удовлетворяет неравенству

. (2.7.26)

Тогда для глобальной погрешности (2.7.15) справедлива следующая оценка:

, (2.7.27)

К-во Просмотров: 501
Бесплатно скачать Курсовая работа: Метод Рунге-Кутты четвертого порядка с автоматическим выбором шага интегрирования решения задачи Коши