Курсовая работа: Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца

где

(5)

где


Тогда

Из (4) и (5) имеем:

Оценим отдельно каждое из слагаемых последнего равенства, используя неравенство Гельдера:

~

где .

Таким образом, получаем, что Аналогично рассмотрим второе слагаемое:

~

~

~

Таким образом, получаем

где c не зависит от .

Теорема доказана.

Теорема 4.3 Пусть - матрица , тогда

~

Причем соответствующие константы не зависят от

К-во Просмотров: 453
Бесплатно скачать Курсовая работа: Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца