Курсовая работа: Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца
,
поэтому r(A0 )≤r(A).
С другой стороны А1 – симметричная матрица и следовательно
.
Таким образом,
.
Теорема доказана.
Теорема 3.3 Пусть множество GÌQ, где Q - решетка размерности nn таково, что, если (k,l)ÎG, то (l,m),(n,k)ÏG для всех n,mÎ{1,2,…,N}.
Тогда, если P(A)ÌG, то r(P(A))=0.
Доказательство. Не трудно проверить, что для матрицы А с ненулевыми элементами из G (т.е. P(A)ÌG) имеет место равенство А2 =0, т.е. А – нильпотентная матрица индекса 2 и следовательно у нее единственное собственное значение 0.
Теорема доказана.
Теорема 3.4 Пусть AÎDm . Пусть Q0 -минимальная подрешетка содержащая P(A), (Q0 ÉP(A)) такая, что в каждой строке и в каждом столбце находится хотя бы один элемент соответствующий нулевому элементу матрицы A.
Пусть Ad – матрица, полученная из матрицы A добавлением элемента со значением d>0 в одно из свободных мест, тогда
Доказательство.
Так как норма оператора не зависит от перестановки строк и столбцов матрицы, то можно считать, что решетка A0 ={(i,j), i=1,…,l; j=1,…,m} расположена в левом верхнем углу матрицы A. Пусть добавлен еще один ненулевой элемент d с координатами (i0 ,j0 ) вне решетки Q0 . Возможны три случая:
1) 1 ≤ i0 ≤ l, j0 > m;
2) i0 > l, 1 ≤ j0 ≤ m;
3) i0 > l, j0 > m.
Рассмотрим первый случай. Не уменьшая общности положим, что этот ненулевой элемент соответствует индексу (1, m+1). По условию теоремы в каждой строке и в каждом столбце имеется хотя бы один нулевой элемент и мы можем предположить, что a1 m =0. Получаем:
Используя неравенства
,
имеем:
Пусть z1 =x1 , z2 =x2 ,…,zm =и
,