Курсовая работа: Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца
Возможны следующие случаи:
.
В первом случае получаем, что
.
Во втором случае , следовательно . Представим , тогда . Здесь и далее - целая часть числа .
Получаем
Заметим, что существует такое, что
Положим Тогда .
.
Таким образом, получаем
Из того, что
Имеем
То есть . Следовательно ↪где соответствующие константы не зависят от N.
Лемма доказана.
Для пары пространств определим интерполяционные пространства аналогично [5] .
Пусть , тогда
где
При q=∞
Лемма 4.4 Пусть , d>1. Тогда