Курсовая работа: Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца
Воспользуемся эквивалентными представлением нормы и неравенством о перестановках, получим
~
где - невозрастающая перестановка последовательности
Применим неравенство Гельдера
Учитывая лемму 3, имеем
Обратно, пусть e произвольное множество из M1 , , где
Тогда
В силу произвольности выбора e из M1 получаем требуемый результат.
Следствие. Пусть - матрица
p0 <p1 , q0 <q1 , тогда
Доказательство. Из теоремы 3 следует, что
Воспользуемся интерполяционными теоремами 1,2, получаем
то есть
С другой стороны по лемме 1 и теореме 3 имеем
,
Следствие доказано.
Заключение